Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-689254.v1

ABSTRACT

Background: Antibacterial prescribing in patients presenting with COVID-19 remains discordant to rates of bacterial co-infection. Implementing diagnostic tests to exclude bacterial infection may aid reduction in antibacterial prescribing. Method: A retrospective observational analysis was undertaken of all hospitalised patients with COVID-19 across a single-site NHS acute Trust (London, UK) from 01/12/20-28/2/21. Electronic patient records were used to identify patients, clinical data, and outcomes. Procalcitonin (PCT) serum assays, where available on admission, were analysed against electronic prescribing records for antibacterial prescribing to determine relationships with a negative PCT result (<0.25mg/L) and antibacterial course length. Results: Antibacterial agents were initiated on admission in 310/624 (49.7%) of patients presenting with COVID-19. 33/74 (44.5%) patients with a negative PCT on admission had their treatment stopped within 24 hours. 6/49 (12.2%) patients who had antibacterials started but a positive PCT had their treatment stopped. Microbiologically confirmed bacterial infection was low (19/594; 3.2%); no correlation was seen with PCT and culture positivity (p=1). Lower mortality (15.6% vs 31.4%;p=0.049), length of hospital stay (7.9days vs 10.1days;p=0.044), and intensive care unit (ICU) admission (13.9% vs 40.8%;p=0.001) were seen among patients with low PCT. Conclusion: This retrospective analysis of community acquired COVID-19 patients demonstrates the potential role of PCT in excluding bacterial co-infection. A negative PCT on admission correlates with shorter antimicrobial courses, early cessation of therapy and predicts lower frequency of ICU admission. Low PCT may support decision making in cessation of antibacterials at the 48-72 hour review.


Subject(s)
COVID-19 , Bacterial Infections
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-113509.v1

ABSTRACT

Objectives – We investigated for change in blood stream infections (BSI) with Enterobacterales, coagulase negative staphylococci (CoNS), Streptococcus pneumoniae, and Staphylococcus aureus during the first UK wave of SARS-CoV-2 across six London hospitals.Methods – A retrospective multicentre ecological analysis was undertaken evaluating all blood cultures taken from adults from 01 April 2017 to 30 April 2020 across six acute hospitals in London. Linear trend analysis and ARIMA models allowing for seasonality were used to look for significant variation.Results –119,584 blood cultures were included. At the height of the UK SARS-CoV-2 first wave in April 2020, Enterobacterales bacteraemias were at an historic low across two London trusts (63/3814, 1.65%), whilst CoNS were at an historic high (173/3814, 4.25%). This differed significantly for both Enterobacterales (p=0.013) and CoNS (p<0.01), when compared with prior periods, even allowing for seasonal variation. S. pneumoniae (p=0.631) and S. aureus (p=0.617) BSI did not vary significant throughout the study period.Conclusions – Significantly fewer than expected Enterobacteriales BSI occurred during the UK peak of the COVID-19 pandemic; identifying potential causes, including potential unintended consequences of national self-isolation public health messaging, is essential. High rates of CoNS BSI, presumably representing contamination associated with increased use of personal protective equipment, may result in inappropriate antimicrobial use and indicates a clear area for intervention during further waves.


Subject(s)
COVID-19
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-52481.v4

ABSTRACT

Background: Accurately predicting patient outcomes in Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could aid patient management and allocation of healthcare resources. There are a variety of methods which can be used to develop prognostic models, ranging from logistic regression and survival analysis to more complex machine learning algorithms and deep learning. Despite several models having been created for SARS-CoV-2, most of these have been found to be highly susceptible to bias. We aimed to develop and compare two separate predictive models for death during admission with SARS-CoV-2.MethodBetween March 1 - April 24, 2020, 398 patients were identified with laboratory confirmed SARS-CoV-2 in a London teaching hospital. Data from electronic health records were extracted and used to create two predictive models using: 1) a Cox regression model and 2) an artificial neural network (ANN). Model performance profiles were assessed by validation, discrimination, and calibration.Results Both the Cox regression and ANN models achieved high accuracy (83.8%, 95% confidence interval (CI): 73.8 - 91.1 and 90.0%, 95% CI: 81.2 - 95.6, respectively). The area under the receiver operator curve (AUROC) for the ANN (92.6%, 95% CI: 91.1 - 94.1) was significantly greater than that of the Cox regression model (86.9%, 95% CI: 85.7 - 88.2), p=0.0136. Both models achieved acceptable calibration with Brier scores of 0.13 and 0.11 for the Cox model and ANN, respectively. ConclusionWe demonstrate an ANN which is non-inferior to a Cox regression model but with potential for further development such that it can learn as new data becomes available. Deep learning techniques are particularly suited to complex datasets with non-linear solutions, which make them appropriate for use in conditions with a paucity of prior knowledge. Accurate prognostic models for SARS-CoV-2 can provide benefits at the patient, departmental and organisational level.


Subject(s)
Severe Acute Respiratory Syndrome
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20174193

ABSTRACT

Background Access to rapid diagnosis is key to the control and management of SARS-CoV-2. Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) testing usually requires a centralised laboratory and significant infrastructure. We describe the development and diagnostic accuracy assessment of a novel, rapid point-of-care RT-PCR test, the DnaNudge platform CovidNudge test, which requires no laboratory handling or sample pre-processing. Methods Nasopharyngeal swabs are inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as a positive control. Between April and May 2020, swab samples were tested in parallel using the CovidNudge direct-to-cartridge platform and standard laboratory RT-PCR using swabs in viral transport medium. Samples were collected from three groups: self-referred healthcare workers with suspected COVID-19 (Group 1, n=280/386; 73%); patients attending the emergency department with suspected COVID-19 (Group 2, n=15/386; 4%) and hospital inpatient admissions with or without suspected COVID-19 (Group 3, n=91/386; 23%). Results Of 386 paired samples tested across all groups, 67 tested positive on the CovidNudge platform and 71 with standard laboratory RT-PCR. The sensitivity of the test varied by group (Group 1 93% [84-98%], Group 2 100% [48-100%] and Group 3 100% [29-100%], giving an average sensitivity of 94.4% (95% confidence interval 86-98%) and an overall specificity of 100% (95%CI 99-100%; Group 1 100% [98-100%]; Group 2 100% [69-100%] and Group 3 100% [96-100%]). Point of care testing performance was comparable during a period of high (25%) and low (3%) background prevalence. Amplification of the viral nucleocapsid (n1, n2, n3) targets were most sensitive for detection of SARS-CoV2, with the assay able to detect 1x104 viral particles in a single swab. Conclusions The CovidNudge platform offers a sensitive, specific and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The implementation of such a device could be used to enable rapid decisions for clinical care and testing programs.


Subject(s)
COVID-19
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-28006.v1

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Case identification is currently made by real-time polymerase chain reaction (PCR) during the acute phase and largely restricted to healthcare laboratories. Serological assays are emerging but independent validation is urgently required to assess their utility.We evaluated five different point-of-care (POC) SARS-CoV-2 antibody test kits against PCR, finding concordance across the assays (n=15). We subsequently tested 200 patients using the OrientGene COVID-19 IgG/IgM Rapid Test Cassette and find a sensitivity of 74% in the early infection period (day 5-9 post symptom onset), with 100% sensitivity not seen until day 13. Specificity was 96%, but in validating the serological tests uncovered potential false-negatives from PCR testing late-presenting cases. A positive predictive value (PPV) of 37% in the general population precludes any use for general screening. Where a case definition is applied however, the PPV is substantially improved (95·4%), supporting use of serology testing in carefully targeted populations. Larger studies in specific patient cohorts, including those with mild infection are urgently required to inform on the applicability of POC serological assays to help control the spread of SARS-CoV-2 and improve case finding of patients that may experience late complications. 


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
SELECTION OF CITATIONS
SEARCH DETAIL